Computer-aided structural optimization, synthesis, evaluation of the antimicrobial and cytotoxic activity of some pyrazoline derivatives

Original Research

Abstract

Introduction: In the last few decades, pyrazoline-based substances have emerged as potential antimicrobial and anticancer candidates. In concern with antimicrobial activity, this study aims to build a docking model to predict the structure of potential 2-pyrazoline derivatives. The cytotoxicity of some compounds was also evaluated to get insight into the structure–anticancer activity relationship of the 2-pyrazoline derivatives.

Methods: Docking models were built on virtual FabH enzymes using FlexX platform with 2-pyrazoline derivatives served as test sets. Afterward, derivatives with high docking scores were chemically synthesized and evaluated for antibacterial activity using the agar dilution method. Furthermore, MTT assay was used to assess the cytotoxicity of these compounds.

Results: The docking score and the in vitro minimum inhibitory concentration (MIC) value on Staphylococcus aureus (S. aureus) bacteria strongly correlate with an R-square value of 0.6751 (p < 0.0001). Four 2 pyrazoline derivatives were synthesized and evaluated for antimicrobial activity. Their MIC values on S. aureus range between 4 and 16 μg/mL, consistent with ones predicted by the docking model. Apropos cytotoxic properties, a series of 2-pyrazolines exhibit a moderate activity on HepG2, RD, and MDA-MB-231. The most active compound, HP10, has the IC50 values on these cell lines. which are 26.62 μM, 17.74 μM, 14.47 μM, respectively.

Conclusion: Our research built a docking model on the virtual S. aureus FabH enzyme with high potential in predicting antibacterial activities of different 2-pyrazoline derivatives. Moreover, our cytotoxicity results provided data for further studies on the anticancer activity of these promising derivatives.
 

Graphical abstract

Structure-based virtual screening of plant-derived natural compounds as potential PPARα agonists for the treatment of dyslipidemia

Original Research

Abstract

Background: Nowadays, metabolic disorders such as dyslipidemia have become serious health problems in the modern world. PPARs are regulators of numberous metabolic pathways, hence there has been a huge increase in the development and use of the PPARs agonists, especially PPARα agonists as main therapeutic of dyslipidemia.

Objectives: The study aimed to explore potential plant-derived natural compounds as PPARα agonist agent for drug discovery of dyslipidemia. Methods: Structure-based virtual screening through molecular docking was conducted for 142 bioactive compounds from 29 medicinal plants on the main binding site of PPARα (PDB ID: 5HYK). Binding affinities and binding interactions between the ligands and PPARα were investigated.

Results: Screening results showed that 34 compounds had strong binding affinities into the PPARα (binding affinities of less than -8.0 kcal.mol-1), including 20 flavonoid, 4 terpenoid and 10 alkaloid compounds. Flavonoid was found as the best group which fitted well in the binding site of the PPARα. Top compounds were identified, including formononetin from Thermopsis alterniflora (-10.2 kcal.mol-1), diosmetin from Musa spp. (-10.1 kcal.mol-1), luteolin from Elsholtzia ciliate (-9.9 kcal.mol-1); steviol from Stevia rebaudiana (-9.4 kcal.mol-1); and tuberocrooline from Stemona tuberosa (-10.5 kcal.mol-1), respectively. These compounds showed the potential agonistic activities due to forming the hydrogen bonds as well as hydrophobic interactions with four key residues of the receptor such as Ser280, Tyr314, His440 and Tyr464.

Conclusions: These potential natural compounds may provide useful information in the drug design and discovery for anti-dyslipidemia agents.

Graphical abstract

Phytochemical compounds of Morus alba as anti-aging agent towards in silico binding to matrix metalloproteinase proteins

Original Research

Abstract

Skin aging is a natural phenomenon which is related to progressive loss of skin structural integrity and physiological function and affects aesthetics which has been of highly interest. Inhibition of matrix metalloproteinases (MMPs) such as MMP-1, MMP-3, MMP-9 is one of the potential approaches for anti-aging treatment as these targets are involved in molecular pathology to skin aging process from sunlight. The aim of the study was to investigate the binding affinity of 9 phytochemical compounds extracted from Morus alba Moraceae into the MMP enzymes leading to potential anti-aging activity by using in silico approaches including molecular docking and molecular dynamics simulations. All the compounds showed binding abilities into the targets. In particular, mulberrofuran H obtained the best docking results on the three MMPs. Molecular dynamics simulations of the complex of  mulberrofuran H and MMP-9 showed that this complex was stable. Combination of molecular docking and molecular dynamics simulations results, there was an important hydrophobic interaction between mulberrofuran H and His401 at the active site of the MMP-9, which determined the MMP-9 inhibitory potential of mulberrofuran H. The ligand mulberrofuran H was also stabilized into the MMP-9 protein by hydrogen bonds with Pro421 with the high occupancy of 77.67%. These results demonstrated the good binding of mulberrofuran H on the protein MMP-9 which highlighted its anti-aging potency.

Graphical abstract

Synthesis, in vitro Acetylcholinesterase Inhibitory Activity Evaluation and Docking Investigation of Some Aromatic Chalcones

Original Research

Abstract

In this study, a total of twenty chalcones were synthesized via Claisen-Schmidt condensation reaction and evaluated for their in vitro acetylcholinesterase inhibitory activities using Ellman’s method. Molecular docking studies on acetylcholinesterase were performed to elucidate the interactions between these chalcone derivatives and acetylcholinesterase active site at the molecular level. From the series, six compounds (S1-5 and S17) exhibited strong acetylcholinesterase inhibitory activities with IC50 values below 100 µM compared to the parent unsubstituted chalcone. Compound S17 (4’-amino-2-chlorochalcone) showed the strongest acetylcholinesterase inhibitory activity in the investigated group with IC50 value of 36.10 µM. Molecular modeling studies were consistent with the results of in vitro acetylcholinesterase inhibitory activities, and chalcone S17 could be considered as a potential lead compound for the development of new acetylcholinesterase inhibitors.

Graphical abstract

Filters